EFFECTS OF WHITE TEA, GREEN TEA, AND MORINGA ON PPARγ GENE EXPRESSION IN STREPTOZOTOCIN-INDUCED RATS

Main Article Content

Rina Martini
Clara Meliyanti Kusharto
Hadi Riyadi
Cece Sumantri
Dadan Rohdiana

Abstract

ABSTRACT


Peroxisome proliferator-activated receptor γ (PPARγ) has a vital role in cellular antioxidant defense systems. Several studies have reported that natural activators of the PPARγ pathway improve the development of various metabolic disorders caused by oxidative stress, including diabetes mellitus. White tea and moringa contain high amounts of antioxidants, and the flavonoid content is epigallocatechin gallate (EGCG). This study aimed to assess the effect of EGCG on PPARγ expression in the liver of diabetic experimental rats. This study used a posttest control-group design. The Sprague-Dawley male rats were assigned to several groups as follows: negative control group; diabetic (DM) group; diabetic group treated with EGCG (100 mg/kg BW) from green tea, white tea, moringa, white tea +moringa for 21 days; and baseline group (observations collected before any intervention or treatment).  The diabetic condition was achieved by streptozotocin (40 mg/kg BW) induction.  RNA was extracted from liver tissue, and PPARγ gene expression was further analyzed by quantitative real-time PCR. The relative expression levels of PPARγ genes were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) using the 2-ΔΔCT formula. PPARγ gene expression in rats treated with green tea and white tea+moringa was 2.05-fold and 2.61-fold higher compared to the control group. The results of this study indicated that interventions with 100mg/kg BW EGCG from green tea and white tea + moringa upregulated PPARγ gene expression.


Keywords: moringa, PPARγ, relative expression, white tea


ABSTRAK


Peroxisome proliferator-activated receptor γ (PPARγ) memiliki peran penting dalam sistem pertahanan antioksidan seluler. Beberapa penelitian melaporkan efek peningkatan dari aktivator alami pada jalur PPARγ dalam perkembangan berbagai jenis gangguan metabolik yang disebabkan oleh stres oksidatif, termasuk diabetes mellitus. Teh putih dan kelor mengandung antioksidan tinggi, dengan kandungan flavonoid berupa epigallocatechin gallate (EGCG). Penelitian ini bertujuan untuk menilai efek EGCG terhadap ekspresi PPARγ di hati tikus percobaan diabetes. Penelitian ini merupakan studi eksperimental dengan desain kelompok kontrol pasca-uji. Tikus jantan Sprague-Dawley dibagi ke dalam beberapa kelompok sebagai berikut: kelompok kontrol negatif; kelompok diabetes (DM); kelompok diabetes yang diberi perlakuan EGCG (100 mg/kg BB) dari teh hijau, teh putih, kelor, serta kombinasi teh putih+kelor selama 21 hari; dan kelompok baseline (pengamatan yang dikumpulkan sebelum intervensi atau perawatan apa pun). Kondisi diabetes diinduksi dengan streptozotosin (40 mg/kg BB). RNA diekstraksi dari jaringan hati, dan pengukuran gen PPARγ dianalisis lebih lanjut menggunakan real-time PCR kuantitatif. Tingkat ekspresi relatif gen PPARγ dinormalisasi terhadap gliseraldehida-3-fosfat dehidrogenase (GAPDH) menggunakan rumus 2-ΔΔCT. Ekspresi gen PPARγ pada tikus yang diberi perlakuan teh hijau dan kombinasi teh putih+kelor meningkat masing-masing 2,05 kali dan 2,61 kali dibandingkan dengan kelompok kontrol. Hasil penelitian ini menunjukkan bahwa intervensi dengan EGCG 100 mg/kg BB dari teh hijau serta kombinasi teh putih+kelor meningkatkan ekspresi gen PPARγ.


Kata kunci: kelor, PPARγ, ekspresi relatif, teh putih

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Newsholme P, Cruzat VF, Keane KN, Carlessi R, Ivo P, Bittencourt H De. Molecular mechanisms of ROS production and oxidative stress in diabetes. 2016;(May):4527–50. https://doi.org/10.104 2/BCJ20160503C

Lee C. Review Article Collaborative Power of Nrf2 and PPAR γ Activators against Metabolic and Drug-Induced Oxidative Injury. 2017;2017. https://doi.org/10.1155/2 017/1378175

Kvandová M, Majzúnová M, Dovinová I. The Role of PPARγ in Cardiovascular Diseases. Physiol Res. 2016. 2016;65. https://doi.org/1 0.33549/physiolres.933439

Wang L, Waltenberger B, Pferschy-wenzig E maria, Blunder M, Liu X, Malainer C, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARg): a review. Biochem Pharmacol. 2014;92(1):73–89. https://doi.org/10.1016/j. bcp.2014.07.018

Jin, X., Qiu, T., Li, L., Yu, R., Chen, X., Li, C., ... & Jiang, T. Pathophysiology of obesity and its associated diseases. Acta Pharmaceutica Sinica B, 13(6), 2403-2424. https://doi.org/10.1016/j.apsb.2023.01.012

Gupta D, Bhaskar D, Gupta R, Karim B, Jain A, Dalai D. Green tea: A review on its natural anti-oxidant therapy and cariostatic benefits. J Pharm Biol Sci, 2014: 2(1):8-12.

Islam SMd. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine. 2011.19(1):25-31. https://doi.org/10.1016/j.phymed.2011.06.025

Divi SM, Bellamkonda R, Dasireddy S.K. Evaluation of antidiabetic and antihyperlipidemic potential of aqueous extract of Moringa oleifera in fructose fed insulin resistant and STZ induced diabetic Wistar rats: a comparative study. Asian J Pharm Clin Res. 2012. 5(1):67-72.

Mbikay. Theurapetic potential of Moringa oleifera leaves in choric hyperglycemia and dyslipidemia: a review. Front Pharmacol. 2012. 3(24):1-12. https://doi.org/10.3389/fph ar.2012.00024

Tsao R. Chemistry and Biochemistry of Dietary Polyphenols. 2010;1231–46. https://doi.org/10.3390/nu2121231

Potenza MA, Marasciulo FL, Tarquino M, Tiravanti E, Colantuono G Federici A, Kim JA, Quon MJ, Montagnani M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab. 2007. 292(5):E1378-E1387. https://doi.org/10.1152/ajpendo.006 98.2006

Wu, M., Liu, D., Zeng, R., Xian, T., Lu, Y., Zeng, G., ... & Huang, Q. Epigallocatechin-3-gallate inhibits adipogenesis through down-regulation of PPARγ and FAS expression mediated by PI3K-AKT signaling in 3T3-L1 cells. European Journal of Pharmacology, 2017 (795):134-142. https://doi.org/10.1016/j.ejphar.2016.12.006

Min K jin, Kwon TK. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. 2014;3:16–24. https://doi.org/10.1016/j.imr.2013.12.001

Martono Y, Martono S. Analisis kromatografi cair kinerja tinggi untuk penetapan kadar asam galat, kafein dan epigalokatekin galat pada beberapa produk teh celup. Agritech. 2012. 32(4):362-369. https://doi.org/10.22 146/agritech.9578

Afify AEMR, shalaby EA, El-Beltagi HS. Antioxidant Activity of Aqueous Extracts of Different Caffeine Products. Not Bot Horti Agrobo. 2011. 39(2):117-123. https://doi.org /10.15835/nbha3926254

Rahma, A., Martini, R., Kusharto, C. M., Damayanthi, E., & Rohdiana, D. Teh putih (Camellia sinensis) dan kelor (Moringa oleifera) sebagai antihiperglikemia pada tikus Sprague dawley yang diinduksi streptozotocin. Jurnal Gizi dan Pangan, 2017.12(3), 179-186. https://doi.org/10.2518 2/jgp.2017.12.3.179-186

Ramadan G, El-Beih NM, Abd EA. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Br J Nutr. 2009. 102(11):1611-1619. https://doi.org/10. 1017/s000711450999208x

Wei X, Zhiwei Y, Yanhong G, Jianbo X, dan Yuanfeng W. Composition and Biological Activity of Tea Polysaccharides Obtained by Water Extraction and Enzymatic Extraction. Lat Am J Pharm. 2010 29 (1): 117-121. https://doi.org/10.1016/j.ijbiomac.2011.06.016

Teixeira LG, Lages PC, Jascolka TL, Aguilar EC, Soares FL, Pereira SS, Beltrao NR, Matoso RO. White tea (Camellia sinensis) extract reduces oxidative stress and triacylglycerols in obese mice. Cienc Tecnol Aliment. 2012. 32(4):733-741. https://doi.org/10.1590/S0101-2061201200 5000099

Jigisha A, Nishant R, Navin K, Pankaj G. Green tea: a magical herb with miraculous 334 outcomes. Int J Pharm Sci Res. 2012. 3(5):139-148.

Gopalakrishnan L, Doriya K, Kumar D. Moringa oleifera: A review on nutritive importance and its medicinal application. J Food Sci Hum Well. 2016. 5(2):49-56. https://doi.org/10.1016/j.fshw.2016.04.001

Malki A, Rabey H.The Antidiabetic effect of low doses of Moringa oleifera Lam seeds on streptozocin induced diabetes and diabetic nephropathy in male rats. Biomed Res Int (2015):1-13. https://doi.org/10.1155/2015/3 81040

Abdulkadir A, Zawawi D, Jahan S. DPPH antioxidant, total phenolic and total flavonoid content of different part of drumstick tree (Moringa oleifera). J Chem Pharm Res. 2015. 7(4):1423-1428.

Hemant U, Pradip S, Tarannum P. A study on the effects of Moringa oleifera lam. pod extract on alloxan induced diabetic rats. Asian J Plant Sci. 2014. 4(1):36-41.

Wardani E, Sunaryo H, Sopiani MZ, Fatahillah M. Aktivitas antihypertrigliserida dan antihiperglikemik ekstrak daun kelor (Moringa oleifera Lam.) pada tikus hipergliserida diabetes. Media Farmasi. 2015. 12(2): 199-212. https://doi.org/10.129 28/mf.v12i2.3759

Geleta B, Makonnen E, Debella A, Tadele A. In vivo antihypertensive and antihyperlipidemic effects of the crude extracts and fractions of Moringa stenopetala(Baker f.) Cufod. Leaves in rats. Front. Pharmacol. 2016. 7:(97):1-10. https://doi.org/10.3389/fphar.2016.00097

Ambarwati, Sarjadi, Andrew J, Kis D. Efek Moringa oleifera terhadap gula darah dan kolagen matrik ekstraseluler sel pankreas diabetes eksperimental. J Kedokteran Brawijaya. 2014. 28(2):74-78. https://doi.org /10.21776/ub.jkb.2014.028.02.3

Lin J, Redies C. Histological evidence : housekeeping genes beta-actin and GAPDH are of limited value for normalization of gene expression. 2012;369–76. https://doi.org/10. 1007/s00427-012-0420-x

Kar P, Chawla H, Saha S, Tandon N, Goswami R. Identification of reference housekeeping-genes for mRNA expression studies in patients with type 1 diabetes. Mol Cell Biochem. 2016. https://doi.org/10.1007/ s11010-016-2712-3

Rebouças EDL, Jackson J, Passos MJ, Renato J, Passos DS, Hurk R Van Den, et al. Real Time PCR and Importance of Housekeepings Genes for Normalization and Quantification of mRNA Expression in Different Tissues. 2013;56:143–54. https://doi.org/10.1590/S1516-8913201300 0100019

Yan Z, Gao J, Lv X, Yang W, Wen S, Tong H, et al. Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis. 2016;2016:7–11. https://doi.or g/10.1155/2016/8367063

Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. 2013;(12). https://doi.org/10.1186/2251-658 1-12-60

Vidal-puig A, Jimenez-liñan M, Lowell BB, Hamann A, Hu E, Spiegelman B. Regulation of PPAR gene expression by nutrition and obesity in rodents Regulation of PPAR Gene Expression by Nutrition and Obesity in Rodents. 2016;(July 1996). https://doi.org/10.1172/jci118703

Jingqi YAN, Yan Z, Baolu Z. Green tea catechins prevent obesity through modulation of peroxisome proliferator-activated receptors. 2013;(September). https://doi.org/10.1007/s11427-013-4512-2

Danesi F, Nunzio M Di, Boschetti E, Bordoni A. Green tea extract selectively activates peroxisome proliferator-activated receptor β / δ in cultured cardiomyocytes Short Communication Green tea extract selectively activates peroxisome proliferator-activated receptor b / d in cultured cardiomyocytes. 2009;(June). https://doi.org/10.1017/s0007114508145871

Mao JT, Nie W xian, Tsu I hsien, Jin Y sheng, Rao JY, Lu Q yi, et al. White Tea Extract Induces Apoptosis in Non – Small Cell Lung Cancer Cells : the Role of Peroxisome Proliferator-Activated Receptor- γ and 15-Lipoxygenases. 2010;3(September):1132–40. https://doi.org /10.1158/1940-6207.capr-09-0264

Lako J. Food Chemistry Phytochemical flavonols , carotenoids and the antioxidant properties of a wide selection of Fijian fruit , vegetables and other readily available foods. 2007;101:1727–41. https://doi.org/10.1016/j .foodchem.2006.01.031

Bhagwat S, Haytowitz DB. USDA Database for the Flavonoid Content of Selected Foods Prepared by. 2015;

Kumar S, Sharma H, Yadav K. Quercetin and Metabolic Syndrome. European Journal of Pharmaceutical and Medical Research. 2016;3(5):701–9.

Beekmann K, Rubió L, Haan LHJ De, Actis-goretta L, Burg B Van Der, Bladeren J Van, et al. Function and glucuronides on peroxisome proliferator-. 2015;1098–107. https://doi.org/10.1039/C5FO00076A

Eseberri I, Miranda J, Lasa A, Churruca I, Portillo MP. Doses of Quercetin in the Range of Serum Concentrations Exert Delipidating Effects in 3T3-L1 Preadipocytes by Acting on Different Stages of Adipogenesis , but Not in Mature Adipocytes. 2015;2015. https://doi.org/10.1155/2015/480943

Kale A, Gawande S, Kotwal S, Netke S, Roomi W, Ivanov V, et al. Studies on the Effects of Oral Administration of Nutrient Mixture , Quercetin and Red Onions on the Bioavailability of Epigallocatechin Gallate from Green Tea Extract. 2010;55(July 2009):48–55. https://doi.org/10.1002/ptr.289 9

Moon YJ, Morris ME. articles Pharmacokinetics and Bioavailability of the Bioflavonoid Biochanin A : Effects of Quercetin and EGCG on Biochanin A Disposition in Rats. 2007;4(6):865–72. https://doi.org/10.1021/mp7000928

Panche AN, Diwan AD, Chandra S.R. Review Article : Flavonoids : an overview. Journal of Nutritional Science. 2016;5(47):1-15. https://doi.org/10.1017/jns.2016.41

Banjarnahor SDS, Artanti N. Antioxidant properties of flavonoids. 2014;23(4):239–44. https://doi.org/10.13181/mji.v23i4.1015

Wook D, Nam S, Min S, Lee W, Jeong M, Mi S, et al. ( S ) -Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR g transactivation. 2009;77:125–33. https://doi. org/10.1016/j.bcp.2008.09.033

Fujiki K, Kano F, Shiota K, Murata M. Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. 2009;14:1–14. https://doi.org/10.1186/1741-7007-7-38

Lee WJ, Shim J youn, Zhu BT. Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids. 2005;68(4):1018–30. https://doi.org/10.1124 /mol.104.008367

Yiannakopoulou EC. Targeting DNA Methylation with Green Tea Catechins. 2015;111–6. https://doi.org/10.1159/000375 503

Wong CP, Nguyen LP, Koh SK, Bray TM, S BR, Ho E. Induction of regulatory T cells by green tea polyphenol EGCG. NIH Public Access. 2014;139(0):7–13. https://doi.org/10.1016/j.imlet.2011.04.009

Pandey M, Shukla S, Gupta S. Promoter Demethylation and Chromatin Remodeling by Green Tea Polyphenols Leads to Re-expression of GSTP1 in Human Prostate Cancer Cells Mitali. 2011;126(11):2520–33. https://doi.org/10.1002/ijc.24988

Wagner H. 2011. Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia 82(2011):34-37. https://doi.org/10.1016/j.fito te.2010.11.016