CONICITY INDEX, LINGKAR PINGGANG, DAN RASIO LINGKAR PINGGANG-TINGGI BADAN DENGAN KADAR GLUKOSA DARAH PUASA PADA DEWASA
Article Sidebar
Download : 488
Main Article Content
Abstract
Central obesity is closely related to various metabolic diseases such as diabetes mellitus (DM). Several studies examined the correlation between central obesity parameters such as waist circumference (WC) and waist-to-height ratio (WtHR) with fasting blood glucose (FBG) levels. One of the parameters of central obesity that is still rarely used in Indonesia is a conicity index (CI). This study analyzed the correlation between CI, WC, and WtHR with FBG levels among 59 subjects aged 35 – 59 years who were selected by consecutive sampling. Venous blood samples were collected for the FBG profile. Data on energy intake and physical activity were taken by interview using the SQ-FFQ and GPAQ. Data were analyzed by Rank Spearman, Mann-Whitney, and linear regression test. Most of the subjects (69,5%) were obese but FBG levels (57,62%) were normal. There was a significant correlation between CI, WC, and WtHR with FBG levels (p<0,05, r=0,313, r=0,336, r=0,389) respectively. To date, WC was the most closely related variable to FBG levels (p<0,001).
Keywords: conicity index, fasting blood glucose, waist circumference, waist-to-height ratio
ABSTRAK
Obesitas sentral berkaitan erat dengan berbagai penyakit metabolik seperti diabetes melitus (DM). Beberapa penelitian mengkaji hubungan parameter obesitas sentral seperti lingkar pinggang (LP) dan rasio lingkar pinggang-tinggi badan (RLPTB) dengan kadar glukosa darah puasa (GDP). Salah satu parameter obesitas sentral yang masih jarang digunakan di Indonesia yaitu conicity index (CI). Penelitian bertujuan untuk menganalisis hubungan CI, LP, dan RLPTB dengan kadar GDP pada dewasa dengan subjek 59 orang berusia 35 – 59 tahun yang dipilih secara consecutive sampling. Sampel darah melalui vena diambil untuk mendapatkan profil GDP. Data asupan energi dan aktivitas fisik diambil dengan wawancara menggunakan kuesioner SQ-FFQ dan GPAQ. Data dianalisis menggunakan uji korelasi Rank Spearman, Mann-Whitney, dan regresi linear. Sebagian besar subjek (69,5%) memiliki status gizi obesitas, namun kadar GDP (57,62%) tergolong normal. Korelasi signifikan positif ditemukan antara CI, LP, dan RLPTB dengan kadar GDP (p<0,05, r=0,313, r=0,336, r=0,389). Uji multivariat menunjukkan LP merupakan variabel yang paling berpengaruh terhadap kadar GDP yang dibuktikan dengan nilai p<0,001.
Kata kunci: conicity index, glukosa darah puasa, lingkar pinggang, rasio lingkar pinggang-tinggi badan
Downloads
Article Details
Authors who publish with Gizi Indonesia (Journal of The Indonesian Nutrition Association) agree to the following terms:
- Authors retain copyright and grant Gizi Indonesia (Journal of The Indonesian Nutrition Association) right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to remix, adapt, build upon the work non-commercially with an acknowledgement of the work's authorship and initial publication in Gizi Indonesia (Journal of The Indonesian Nutrition Association).
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
D.0000000000008192
Motamed 1. O’Neill D. Measuring obesity in the absence of a gold standard. Economics and Human Biology. 2015; 17:116–28. doi: 10.1016/j.ehb.2015.02.002
WHO. Global health risks: mortality and burden of disease attributable to selected major risks. WHO Press; 2009.
LPB. Laporan nasional riskesdas 2018. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan; 2018.
Souza S de A, Silva AB, Cavalcante UMB, Lima CMBL, Souza TC de. Adult obesity in different countries: an analysis via beta regression models. Cad Saude Publica. 2018; 34(8):1–13. doi: 10.1590/0102-311X00161417
Dhawan D, Sharma S. Abdominal obesity, adipokines and non-communicable diseases. Journal of Steroid Biochemistry Molecular Biology. 2020; 203:105737. doi: 10.1016/j.jsbmb.2020.105737
ADA. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020; 43(Supplement 1):S14–31. doi: 10.2337/dc20-S002
Kemenkes RI. Infodatin tetap produktif, cegah, dan atasi diabetes melitus 2020. Kementerian Kesehatan Republik Indonesia; 2020.
LPB. Laporan Provinsi Jawa Tengah Riskesdas 2018. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan; 2019.
Yakubu IM, Kaoje YS, Jabbe T, Abubakar AA. Best anthropometric predictors of fasting blood sugar, prediabetes, and diabetes. Diabetes Updates. 2020; 6:2-7. doi: 10.15761/DU.1000149
Mayasari N, Wirawanni Y. Hubungan lingkar leher dan lingkar pinggang dengan kadar glukosa darah puasa orang dewasa. Journal of Nutrition College. 2014; 3(4):473-481. doi: 10.14710/jnc.v3i4.6829
Khosravian S, Bayani MA, Hosseini SR, Bijani A, Mouodi S, Ghadimi R. Comparison of anthropometric indices for predicting the risk of metabolic syndrome in older adults. Romanian Journal of Internal Medicine. 2020; 0(0):1–12. doi: 10.2478/rjim-2020-0026
Woldegebriel AG, Fenta KA, Aregay AB, Aregay AD, Mamo NB, Wubayehu TW, et al. Effectiveness of anthropometric measurements for identifying diabetes and prediabetes among civil servants in a regional city of northern ethiopia: a cross-sectional study. Journal of Nutrition Metabolism. 2020; 2020:1–8. doi: 10.1155/2020/8425912
Chen X, Liu Y, Sun X, Yin Z, Li H, Deng K, et al. Comparison of body mass index, waist circumference, conicity index, and waist-to-height ratio for predicting incidence of hypertension: the rural chinese cohort study. Journal of Human Hypertension. 2018; 32(3):228–35. doi: 10.1038/s41371-018-0033-6
A Asif M, Aslam M, Altaf S, Majid A, Atif S. Evaluation of anthropometric parameters of central obesity among professional drivers: A receiver operating characteristic analysis. Kesmas. 2020;15(3):106–12. doi: 10.21109/kesmas.v15i3.3218
Hou X, Chen S, Hu G, Chen P, Wu J, Ma X, et al. Stronger associations of waist circumference and waist-to-height ratio with diabetes than bmi in chinese adults. Diabetes Research and Clinical Practice. 2019; 147: 9–18. doi: 10.1016/j.diabres.2018.07.029
Andrade MD, Freitas MCP de, Sakumoto AM, Pappiani C, Andrade SC de, Vieira VL, et al. Association of the conicity index with diabetes and hypertension in brazilian women. Archives of Endocrinology and Metabolism. 2016; 60(5):436–42.2 doi: 10.1590/2359-3997000000187
Mulyasari I, Purbowati. Conicity index as an indicator of body fat percentage in adolescents. Food Research. 2020; 4(S3):13–7. doi: 10.26656/fr.2017.4(S3).S04
PERKENI. Pedoman pengelolaan dan pencegahan diabetes melitus tipe 2 di indonesia 2019. Jakarta: PB Perkeni; 2019.
Cho S, Shin A, Choi JY, Park SM, Kang D, Lee JK. O ptimal cutoff values for anthropometric indices of obesity as discriminators of metabolic abnormalities in korea: results from a health examinees study. BioMed Central Public Health. 2021;21(1):1–8. doi: 10.1186/s12889-021-10490-9
WHO. Waist circumference and waist–hip ratio: report of a who expert consultation, geneva, 8–11 december 2008. Geneva: WHO; 2008.
Runingsari T. Sensitivity and specificity of waist to height ratio in obesity. Arsip Gizi dan Pangan. 2018;3(2):96–101. https://journal.uhamka.ac.id/index.php/argipa
WHO. Global physical activity questionnaire analysis guide. Geneva; 2010.
Hernández-Vásquez A, Azañedo D, Vargas-Fernández R, Aparco JP, Chaparro RM, Santero M. Cut-off points of anthropometric markers associated with hypertension and diabetes in peru: Demographic and health survey 2018. Public Health Nutrition. 2021;24(4):611–21. doi: 10.1017/S1368980020004036
Quaye L, Owiredu WKBA, Amidu N, Dapare PPM, Adams Y. Comparative abilities of body mass index, waist circumference, abdominal volume index, body adiposity index, and conicity index as predictive screening tools for metabolic syndrome among apparently healthy ghanaian adults. Journal of Obesity. 2019; 2019(Ci):1–10. doi: 10.1155/2019/8143179
Motamed N, Perumal D, Zamani F, Ashrafi H, Haghjoo M, Saeedian FS, et al. Conicity index and waist-to-hip ratio are superior obesity indices in predicting 10-year cardiovascular risk among men and women. Clinical Cardiology Journal. 2015;38(9):527–34. doi: 10.1002/clc.22437
Yang H, Xin Z, Feng J-P, Yang J-K. Waist-to-height ratio is better than body mass index and waist circumference as a screening criterion for metabolic syndrome in han chinese adults. Medicine (Baltimore). 2017;96(39):e8192. doi: 10.1097/M N, Sohrabi M, Poustchi H, Maadi M, Malek M, Keyvani H, et al. The six obesity indices, which one is more compatible with metabolic syndrome? A population based study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11(3):173–7. doi: 10.1016/j.dsx.2016.08.024
Djap HS, Sutrisna B, Soewondo P, Djuwita R, Timotius KH, Trihono, et al. Waist to height ratio (0.5) as a predictor for prediabetes and type 2 diabetes in indonesia. IOP Conference Series: Materials Science and Engineering. 2018;434:012311. doi: 10.1088/1757-899X/434/1/012311
Adejumo EN, Adejumo AO, Azenabor A, Ekun AO, Enitan SS, Adebola OK, et al. Anthropometric parameter that best predict metabolic syndrome in south west nigeria. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(1):48–54. doi: 10.1016/ j.dsx.2018.08.009.
Veghari G, Sedaghat M, Joshaghani H, Banihashem S, Moharloei P, Angizeh A, et al. The association of fasting blood glucose (fbg) and waist circumference in northern adults in iran: a population based study. Journal of Diabetes & Metabolic Disorders. 2014;13(1):2–7. doi: 10.1186/2251-6581-13-2
Wen WL, Wu PY, Huang JC, Tu HP, Chen SC. Different curve shapes of fasting glucose and various obesity-related indices by diabetes and sex. International Journal of Environmental Research and Public Health. 2021;18(6):1–13. doi: 10.3390/ijerph18063096
Katulanda GW, Katulanda P, Dematapitiya C, Dissanayake HA, Wijeratne S, Sheriff MHR, et al. Plasma glucose in screening for diabetes and pre-diabetes: how much is too much? Analysis of fasting plasma glucose and oral glucose tolerance test in sri lankans. BMC Endocrine Disorders. 2019;19(1):11. doi: 10.1186/s12902-019-0343-x
Hossain MI, Islam MS, Hasan MR, Akter M, Khoka MSH. Fasting blood glucose level and its association with sex, body mass index and blood pressure: a cross sectional study on a bangladeshi public university students. The International Journal of Community Medicine and Public Health Research. 2017;4(8):2663. doi: 10.18203/2394-6040.ijcmph20173310
Nabila R, Widyastuti N, Murbawani EA. Hubungan lingkar pergelangan tangan dengan kadar glukosa darah wanita obesitas usia 40 – 55 tahun. Journal of Nutrition College. 2018;7(2):92. doi: 10.14710/jnc.v7i2.20828
Yin X, Chen Y, Lu W, Jin T, LI L. Association of dietary patterns with the newly diagnosed diabetes mellitus and central obesity: a community based cross-sectional study. Nutrition & Diabetes. 2020; 10(1):16. doi: 10.1038/s41387-020-0120-y
Wang Q, Zhang X, Fang L, Guan Q, Gao L, Li Q. Physical activity patterns and risk of type 2 diabetes and metabolic syndrome in middle-aged & elderly northern chinese adults. Journal of Diabetes Research. 2018;2018:1–8. doi: 10.1155/2018/719827