PREDIKSI TINGGI BADAN BERDASARKAN TINGGI LUTUT PADA PASIEN DEWASA PENYAKIT DALAM DI RUMAH SAKIT

Main Article Content

Astrine Permata Leoni
Wita Rizki Amelia
Ahmad Syauqy
Purwita Wijaya Laksmi

Abstract

Stature data accuracy is very important in hospital care. However, the condition of the patient that does not allow standing makes actual stature measurement difficult. This study aimed to compare the results of measuring actual stature with a stadiometer and estimated stature using the Chumlea, Cheng, Tanchoco, Shahar and Pooy, and Fatmah knee height formula for adult patients in Indonesia. The study design was cross-sectional with internal medicine adult patients aged 18–59 at Dr. Cipto Mangunkusumo (RSCM). The study was conducted in January–April 2022. A sample of 100 patients was selected using the consecutive sampling method. Stature measurement was carried out using a stadiometer and knee height with knee height calipers and filling out a questionnaire. Analysis used paired t-test, Wilcoxon, one sample T, Bland-Altman plot, and simple linear regression. The results showed no significant difference between actual stature and estimated stature using the Shahar and Pooy knee height formula (p=0.379) and had the smallest bias compared to the other two formulas (bias= -0.25 cm); however, it was not reached the agreement. The new formula also has no significant difference from the actual stature (p=0.859) and has a bias of 0.05 cm. In conclusion, the stature prediction formula based on Shahar and Pooy's knee height can be applied to adult patients who cannot stand as the first alternative compared to the other five formulas. The new formula for predicting stature needs to be researched further because it has not yet reached the agreement.

Keywords: stature, knee height, anthropometric measurement, nutritional status

 

ABSTRAK

Data tinggi badan yang akurat sangat penting dalam perawatan di rumah sakit. Akan tetapi, kondisi pasien yang tidak memungkinkan untuk berdiri membuat pengukuran tinggi badan aktual menjadi sulit dilakukan. Penelitian bertujuan untuk mengetahui perbandingan antara hasil pengukuran tinggi badan aktual dengan stadiometer dan estimasi tinggi badan dengan rumus tinggi lutut Chumlea, Cheng, Tanchoco, Shahar dan Pooy, serta Fatmah untuk pasien dewasa di rumah sakit di Indonesia. Desain penelitian ini cross-sectional dengan subjek pasien dewasa penyakit dalam berusia 18–59 tahun di Rumah Sakit Umum Pusat Nasional Dr. Cipto Mangunkusumo (RSCM). Penelitian dilaksanakan pada Januari–April 2022. Sampel sebanyak 100 pasien dipilih dengan metode consecutive sampling. Pengukuran tinggi badan dilakukan dengan menggunakan stadiometer dan tinggi lutut dengan kaliper tinggi lutut serta pengisian kuesioner. Analisis menggunakan uji-T berpasangan, Wilcoxon, T satu sampel, plot Bland-Altman, dan regresi linear sederhana. Hasil menunjukkan tidak ada perbedaan yang signifikan antara tinggi badan aktual dan estimasi tinggi badan dengan rumus tinggi lutut Shahar dan Pooy (p=0,379) serta mempunyai bias terkecil dibandingkan lima rumus lainnya (bias= -0,25 cm), tetapi masih di luar batas kesepakatan yang diharapkan. Rumus baru prediksi tinggi badan juga tidak mempunyai perbedaan yang signifikan dengan badan aktual (p=0,859) dan mempunyai bias sebesar 0,05 cm. Rumus prediksi tinggi badan berdasarkan tinggi lutut Shahar dan Pooy dapat diterapkan bagi pasien dewasa yang tidak dapat berdiri sebagai alternatif pertama dibandingkan lima rumus lainnya. Rumus baru prediksi tinggi badan perlu diteliti lebih lanjut karena belum mencapai batas kesepakatan.

Kata kunci: tinggi badan, tinggi lutut, pengukuran antropometri, status gizi

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Kahn PA, Cartiera K, Lindop W, Fogerty RL. Accuracy of height measurement in the inpatient setting. Am J Crit Care [Internet]. 2021;30(1):77–9. Available from: https://doi.org/10.4037/ajcc2021780

World Health Organization Regional Office for Europe. Body mass index - BMI [Internet]. 2010 [cited 2020 Nov 12]. Available from: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi

Jensen GL, Cederholm T, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM Criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. J Parenter Enter Nutr [Internet]. 2019;43(1):32–40. Available from: https://doi.org/10.1002/jpen.1440

Ocagli H, Cella N, Stivanello L, Degan M, Canova C. The Barthel index as an indicator of hospital outcomes: A retrospective cross-sectional study with healthcare data from older people. J Adv Nurs [Internet]. 2021;77(4):1751–61. Available from: https://doi.org/10.1111/jan.14708

Vera, Suprana YGE. Profil klinis pasien COVID -19 lansia yang dirawat inap di RS Immanuel Bandung. J Penyakit Dalam Indones [Internet]. 2022;9(2):89–93. Available from: http://dx.doi.org/10.7454/jpdi.v9i2.743

Musa KI, Keegan TJ. The change of Barthel Index scores from the time of discharge until 3-month post-discharge among acute stroke patients in Malaysia: a random intercept model. PLoS One [Internet]. 2018;13(12):1–13. Available from: https://doi.org/10.1371/journal.pone.0208594

Brow RT, Pierluissi E, Guzman D, Kessell ER, Goldman LE, Sarkar U, et al. Functional disability among late middle-aged and older adults admitted to a safety-net hospital. J Am Geriatr Soc [Internet]. 2014;62(11):2056–63. Available from: https://doi.org/10.1111/jgs.13103

Masyitah D. Analisis faktor-faktor yang berhubungan dengan status fungsional pada pasien osteoartritis di RSUD Raden Mattaher Jambi tahun 2018. J Ilm Univ Batanghari Jambi [Internet]. 2020;20(1):225–31. Available from: https://doi.org/10.33087/jiubj.v20i1.877

World Health Organization. Physical status: the use and interpretation of anthropometry - report of a WHO expert committee [Internet]. WHO Techincal Report Series. Geneva; 1995. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1879406810000068

Shahar S, Pooy NS. Predictive equations for estimation of stature in Malaysian elderly people. Asia Pac J Clin Nutr [Internet]. 2003;12(1):80–4. Available from: https://apjcn.nhri.org.tw/server/APJCN/12/1/80.pdf

Fatmah. Model prediksi tinggi badan lansia etnis Jawa berdasarkan tinggi lutut, panjang depa, dan tinggi duduk. Sekolah Pascasarjana Institut Pertanian Bogor. Institut Pertanian Bogor; 2008.

Murbawani EA, Puruhita N, Yudomurti. Tinggi badan yang diukur dan berdasarkan tinggi lutut menggunakan rumus Chumlea pada lansia. Media Med Indones [Internet]. 2012;46(1):1–6. Available from: https://media.neliti.com/media/publications/220273-tinggi-badan-yang-diukur-dan-berdasarkan.pdf

Azkiyah WSN, Handayani D, Holipah. Validitas estimasi tinggi badan berdasarkan tinggi lutut pada lansia di kota Malang (Validity of height estimation based on knee height in the elderly in Malang). Indones J Hum Nutr. 2016;3(2):93–104.

Riski F, Kartasurya MI, Pradigdo SF. Penggunaan tinggi lutut dan panjang depa sebagai prediktor tinggi badan dan indeks massa tubuh pada lansia di kelurahan Sambiroto kota Semarang. J Kesehat Masy [Internet]. 2018;6(5):378–87. Available from: https://ejournal3.undip.ac.id/index.php/jkm/article/view/22061

Chumlea WC, Guo SS, Wholihan K, Cockram D, Kuczmarski RJ, Johnson CL. Stature prediction equations for elderly non-Hispanic white, non- Hispanic black, and Mexico-American persons developed from NHANES III data [Internet]. Vol. 98, Journal of the American Dietetic Association. 1998. p. 137–42. Available from: https://doi.org/10.1016/S0002-8223(98)00036-4

Nestle Nutrition Institute. A guide to completing the Mini Nutritional Assessment (MNA®). Available from: http://www.mna-elderly.com/forms/mna_guide_english.pdf

Israel GD. Determining Sample Size [Internet]. Florida Cooperative Extension Service. Gainesville; 1992. Available from: https://www.psycholosphere.com/Determining sample size by Glen Israel.pdf

Merli M, Berzigotti A, Zelber-Sagi S, Dasarathy S, Montagnese S, Genton L, et al. EASL clinical practice guidelines on nutrition in chronic liver disease. J Hepatol [Internet]. 2019;70(1):172–93. Available from: https://doi.org/10.1016/j.jhep.2018.06.024

World Health Organization. Section 4: guide to physical measurements (step 2) overview. STEPwise approach to Surveill chronic non-communicable Dis Man. 2000;(Step 2):3–4.

Gandy J. Nutritional Status. In: Gandy J, editor. Manual of Dietetic Practice. Fifth. Chichester: The British Dietetic Association; 2014. p. 50.

World Health Organization Regional Office for Europe. Body mass index - BMI [Internet]. World Health Organization. 2021 [cited 2021 May 1]. Available from: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi

Giavarina D. Understanding Bland Altman analysis. Biochem Medica [Internet]. 2015;25(2):141–51. Available from: https://doi.org/10.11613/BM.2015.015

Dahlan MS. Metode MSD (Multiaksial Sopiyudin Dahlan) Seri 13 - Pintu Gerbang Memahami Statistik, Metodologi, dan Epidemiologi. I. Jakarta: CV Sagung Seto; 2014.

Venkataraman R, Ranganathan L, Nirmal V, Kameshwaran J, Sheela C V., Renuka M V., et al. Height measurement in the critically ill patient: A tall order in the critical care unit. Indian J Crit Care Med [Internet]. 2015;19(11):665–8. Available from: https://doi.org/10.4103/0972-5229.169342

Arif MHDN. Gambaran tindakan keperawatan langsung (direct care) pada pasien di ruang ICU Rumah Sakit Umum Daerah Dr. Moewardi Surakarta. Universitas Muhammadiyah Surakarta; 2018.

Junaidi. Membangun kesefahaman Indonesia-Malaysia melalui komunikasi antarbudaya. J Ilmu Budaya [Internet]. 2008;5(1):72–86. Available from: https://journal.unilak.ac.id/index.php/jib/article/view/902/646

Dahlan MS. Regresi Linear (disertai praktik dengan SPSS) Seri 10. 2nd ed. Jakarta: Epidemiologi Indonesia; 2018. 6 p.