PENGEMBANGAN SOYGURT LABU KUNING SEBAGAI TERAPI KOMPLEMENTER DIABETES MELITUS

Main Article Content

Annisa Avelia
Didik Gunawan Tamtomo
Yulia Sari

Abstract

Soygurt is lower in fat and has more active compounds than yogurt. Pectin acts as a prebiotic, increasing the number and activity of probiotic bacteria and preventing oxidative stress, one of the triggers for insulin resistance. Substitution of pumpkin in the formulation of soygurt to increase the organoleptic properties and lactic acid bacteria in the product to optimize its benefits as an anti-diabetes mellitus functional food. The research design was an experiment with a completely randomized design with one control formula and three treatment formulas with comparisons of soybeans and pumpkin as follows F0 100:0, F1 80:20, F2 70:30, and F3 60:40. Organolpetic tests with a scale of 1–6 from dislike to like. The best formula was continued for physicochemistry and proximate tests. The results of the organoleptic test showed that the best treatment was a 20 percent substitution of pumpkin (F1) with a preference scale of 4, which means that this formula was sensory acceptable to the panelists. The nutritional quality of F1 was 3.15 percent protein, 1.35 percent fat, 0.26 percent carbohydrates, 1.03 percent fiber, LAB 9.5x107, and pH 4.13. Substitution of pumpkin in yogurt has the potential to control blood glucose levels because it is low in carbohydrates and fat. Further research is needed to analyze the content of anti-nutritional substances such as phytate, tannins, and trypsin inhibitors, which are generally found in soybeans, the raw material for this product.

 

Keywords: diabetes mellitus, pumpkin, soybean, soygurt

 

ABSTRAK

 

Soygurt lebih rendah lemak dan memiliki senyawa aktif daripada yogurt konvensional. Pektin berperan sebagai prebiotik yang dapat meningkatkan jumlah maupun aktivitas dari bakteri probiotik serta mampu mencegah terjadinya stres oksidatif yang merupakan salah satu faktor pencetus resistensi insulin. Subsitusi labu kuning dalam pengembangan soygurt diharapkan mampu meningkatan sifat organoleptik dan jumlah bakteri asam laktat pada produk sehingga dapat mengoptimalkan manfaatnya sebagai pangan fungsional anti diabetes melitus. Desain penelitian adalah eksperimen dengan rancangan acak lengkap dengan satu formula kontrol dan tiga formula perlakuan dengan perbadingan kedelai dan labu kuning sebagai berikut F0 100:0, F1 80:20, F2 70:30 dan F3 60:40. Uji mutu organolpetik dilakukan skala 1–6 dari tidak suka sampai dengan sangat suka. Formula terbaik dilanjutkan untuk uji fisikokimia dan proksimat. Hasil uji organoleptik menunjukkan perlakuan terbaik adalah substitusi labu kuning sebanyak 20 persen (F1) dengan skala kesukaan 4 yang artinya formula ini secara sensori dapat diterima oleh panelis. Mutu gizi dari produk terpilih yaitu protein 3,15 persen, lemak 1,35 persen, karbohidrat 0,26 persen, serat 1,03 persen, kadar BAL 9,5x107 dan pH 4,13. Subtitusi labu kuning pada soygurt berpotensi mengendalikan kadar glukosa darah karena rendah karbohidrat dan lemak serta mengandung BAL. Penelitian lebih lanjut diperlukan untuk menganalisis kandungan zat anti gizi seperti fitat, tanin dan tripsin inhibitor yang umumnya terdapat pada kedelai yang menjadi bahan baku dari produk ini.

 

Kata kunci: diabetes melitus, kedelai, labu kuning, soygurt

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Boyko E, Magliano DJ, Karuranga S, Piemonte L, Riley P, Saeedi P, et al., editors. International Diabetes Federation. International Diabetes Federation; 2021.

Kementerian Kesehatan RI. Laporan Nasional RISKESDAS 2018 [Internet]. Badan Penelitian dan Pengembangan Kesehatan. Jakarta; 2019. Available from: http://labdata.litbang.kemkes.go.id/images/download/laporan/RKD/2018/Laporan_Nasional_RKD2018_FINAL.pdf

Soelistijo SA, Suastika K, Lindarto D, Decroli E, Permana H, Sucipto KW, et al. Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia 2021 [Internet]. PB PERKENI. 2021. 46 p. Available from: www.ginasthma.org.

Altenhofen D, da Luz G, Frederico MJS, Venzke D, Brich M, Vigil S, et al. Bis-Pyrano Prenyl Isoflavone Improves Glucose Homeostasis by Inhibiting Dipeptidyl Peptidase-4 in Hyperglycemic Rats. J Cell Biochem. 2017;118(1):92–103.

Palacios-González B, Vargas-Castillo A, Velázquez-Villegas LA, Vasquez-Reyes S, López P, Noriega LG, et al. Genistein increases the thermogenic program of subcutaneous WAT and increases energy expenditure in mice. J Nutr Biochem [Internet]. 2019;68:59–68. Available from: https://doi.org/10.1016/j.jnutbio.2019.03.012

Guevara-Cruz M, Godinez-Salas ET, Sanchez-Tapia M, Torres-Villalobos G, Pichardo-Ontiveros E, Guizar-Heredia R, et al. Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects. BMJ Open Diabetes Res Care. 2020;8(1):1–9.

Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, et al. Pectin content and composition from different food waste streams in memory of Anna Surribas, scientist and friend. Food Chem. 2016;201:37–45.

Hu S, Kuwabara R, Beukema M, Ferrari M, de Haan BJ, Walvoort MTC, et al. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydr Polym [Internet]. 2020;249(July):116863. Available from: https://doi.org/10.1016/j.carbpol.2020.116863

Sahasrabudhe NM, Beukema M, Tian L, Troost B, Scholte J, Bruininx E, et al. Dietary fiber pectin directly blocks toll-like receptor 2-1 and prevents doxorubicin-induced ileitis. Front Immunol. 2018;9(MAR):1–19.

Watson RR, Preedy VR. Bioactive Food as Dietary Interventions for Diabetes [Internet]. Second. Rodriguez C, editor. News.Ge. London: Stacy Masucci; 2019. Available from: https://www.elsevier.com/books/bioactive-food-as-dietary-interventions-for-diabetes/watson/978-0-12-813822-9

Zhang L, Chu J, Hao W, Zhang J, Li H, Yang C, et al. Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators Inflamm. 2021;2021.

Yuan T, Ye F, Chen T, Li M, Zhao G. Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.). Food Hydrocoll [Internet]. 2022;122(2):107115. Available from: https://doi.org/10.1016/j.foodhyd.2021.107115

Labiba NM, Marjan AQ, Nasrullah N. Pengembangan Soyghurt (Yoghurt Susu Kacang Kedelai) Sebagai Minuman Probiotik Tinggi Isoflavon. Amerta Nutr. 2020;4(3):244.

Yuniritha E, Avelia A, . A. Effectiveness of Jicama Probiotic Yoghurt (Pachyrhizus erosus) on Blood Glucose in Diabetic Mice. KnE Life Sci. 2019;2019:250–61.

Lestari S. Uji organoleptik mie basah berbahan dasar tepung talas beneng (Xantoshoma undipes) untuk meningkatkan nilai tambah bahan pangan lokal Banten. 2015;1(4):941–6.

Norshazila S, Irwandi J, Othman R, Yumi Zuhanis HH. Carotenoid content in different locality of pumpkin (Cucurbita moschata) in Malaysia. Int J Pharm Pharm Sci. 2014;6(SUPPL. 3):29–32.

Marcelino G, Machate DJ, Freitas K de C, Hiane PA, Maldonade IR, Pott A, et al. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules. 2020;25(24):1–14.

Chua JY, Lu Y, Liu SQ. Evaluation of five commercial non-Saccharomyces yeasts in fermentation of soy (tofu) whey into an alcoholic beverage. Food Microbiol [Internet]. 2018;76(July):533–42. Available from: https://doi.org/10.1016/j.fm.2018.07.016

Tangyu M, Muller J, Bolten CJ, Wittmann C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl Microbiol Biotechnol. 2019;103(23–24):9263–75.

Forst P, Santivarangkna C. Advances in probiotic technology. Advances in Probiotic Technology. New York: CRC Press; 2015. 1–374 p.

Adebo JA, Njobeh PB, Gbashi S, Oyedeji AB, Ogundele OM, Oyeyinka SA, et al. Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation. 2022;8(2):1–57.

Vieira CP, Álvares TS, Gomes LS, Torres AG, Paschoalin VMF, Conte CA. Kefir grains change fatty acid profile of milk during fermentation and storage. PLoS One. 2015;10(10):1–18.

Ziarno M, Bryś J, Parzyszek M, Veber A. Effect of lactic acid bacteria on the lipid profile of bean-based plant substitute of fermented milk. Microorganisms. 2020;8(9):1–15.

Purba RB, Momongan NR, Monolimay S. Asupan karbohidrat dan lemak pada diabetesi tipe II yang rawat jalan di Puskesmas Tombatu. J Gizido. 2015;7(2):362–7.

Konkit M, Kim W. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products. J Dairy Sci [Internet]. 2016;99(7):4999–5007. Available from: http://dx.doi.org/10.3168/jds.2016-11002

Simwaka JE, Chamba MVM, Huiming Z, Masamba KG, Luo Y. Effect of fermentation on physicochemical and antinutritional factors of complementary foods from millet, sorghum, pumpkin and amaranth seed flours. Int Food Res J. 2017;24(5):1869–79.

Genevois C, Flores S, de Escalada Pla M. Byproduct from pumpkin (Cucurbita moschata Duchesne ex poiret) as a substrate and vegetable matrix to contain Lactobacillus casei. J Funct Foods [Internet]. 2016;23:210–9. Available from: http://dx.doi.org/10.1016/j.jff.2016.02.030

Vera-Peña MY, Rodriguez WLR. Effect of pH on the growth of three lactic acid bacteria strains isolated from sour cream. Univ Sci. 2020;25(2):341–58.

Hu G, Jiang H, Zong Y, Datsomor O, Kou L, An Y, et al. Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function. Fermentation. 2022;8(8).

Mozzi F. Lactic Acid Bacteria. Encycl Food Heal [Internet]. 2015;501–8. Available from: http://dx.doi.org/10.1016/B978-0-12-384947-2.00414-1

Lenoir-wijnkoop I, Mahon J, Claxton L, Wooding A, Prentice A, Finer N. An Economic Model For The Use of Yoghurt in Type 2 Diabetes Risk Reduction in The UK. BMC Nutr [Internet]. 2016;1–9. Available from: http://dx.doi.org/10.1186/s40795-016-0115-1

Zhang Q, Wu Y, Fei X. Effect of Probiotics on Glucose Metabolism in Patients with Type 2 Diabetes Mellitus : A Meta-analysis of Randomized Controlled Trials. Medicina (B Aires) [Internet]. 2016;52(1):28–34. Available from: http://dx.doi.org/10.1016/j.medici.2015.11.008